eldorado.tu-dortmund.de/server/api/core/bitstreams/f0fda691-05a5-4050-9af5-8347fb6c7fe0/content
Gram matrix:a 0 0 0 a 0 0 0 c
.
Isometry group of order 16:
〈
0 1 0 1 0 0 0 0 1
,
1 0 0 0 −1 0 0 0 1
,
1 0 0 0 1 0 0 0 −1
〉 =: G16,p,1 .
(0, √ b, √ b)
( √ a, 0, 0)(0, 0, 0)
( √ a, √ b, [...] matrix:a 0 0 0 b 0 0 0 c
.
Isometry group of order 8:
〈
1 0 0 0 1 0 0 0 −1
,
1 0 0 0 −1 0 0 0 1
,
−1 0 0 0 −1 0 0 0 −1
〉 =: G8,p .
body-centered
(0, √ b, √ c)
( √ a, 0, 0)(0, 0, 0)
( √ a [...] 〈
0 1 0 1 0 0 0 0 1
,
1 0 0 0 1 0 0 0 −1
,
−1 0 0 0 −1 0 0 0 −1
〉 = G8,b,2 .
(0, √ b, √ c)
( √ a, 0, 0)(0, 0, 0)
( √ a, √ b, √ c)
( √ a, √ b, 0)
b < b+c 4
2 shortest vectors:( ± √ a, 0, 0 …